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Abstract

This paper reports Monte Carlo simulation results of a polymer melt of short, non-entangled chains which are embedded between two
impenetrable walls. The melt is simulated by the bond-fluctuation lattice model under athermal conditions, i.e. only excluded volume
interactions between the monomers and between the monomers and the walls are taken into account. In the simulations, the wall separation is
varied from about one to about 15 times the bulk radius of gyration R,. The confinement influences both static and dynamic properties of the
films: Chains close to the walls preferentially orient parallel to it. This parallel orientation decays with increasing distances from the wall and
vanishes for distances larger than about 2R,. Strong confinement effects are therefore observed for film thicknesses D < 4R,. The prefer-
ential alignment of the chains with respect to the walls suppresses reorientations in perpendicular direction, whereas parallel reorientations
take place in an environment of high monomer density. Therefore, they have a relaxation time larger than that of the bulk. On the other hand,
the influence of confinement on the translation motion of the chains parallel to the walls is very weak. It almost coincides with the bulk
behavior even if D =~ 1.5R,. Despite these differences between translational and reorientational dynamics, their behavior can be well
reproduced by a variant of Rouse theory which only assumes orthogonality of the Rouse modes and determines the necessary input from

the simulation. © 2001 Elsevier Science Ltd. All rights reserved.
PACS: 68.15. + e; 61.20.Ja; 61.25.Hq
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1. Introduction

Interfacial properties of polymeric films represent an
interesting field of applied and fundamental research
[1-5]. Even if one ignores complications occurring at
the interface between polymer and substrate in real
materials, such as corrugation on atomistic scale, rough-
ness on mesoscopic scale or adsorbed impurities, and
models the underlying substrate as a completely smooth
wall, the properties of the chains close to the wall
substantially deviate from the established bulk behavior
[2—4]. The deviations depend on the polymer—substrate
interaction and external control parameters, such as film
thickness, pressure or temperature.
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If the interaction between the wall and all monomers of
the polymers is attractive, the chains adsorb below the
adsorption temperature T, [5,6]. Above T,, the reduction
of orientational freedom leads to a depletion of chains
near the wall, whereas the gain in interaction energy
outweighs this loss in entropy below T,. The adsorbed
chains have strongly flattened, almost two-dimensional
configurations contrary to the random coil structure in the
bulk [7-13]. The thermodynamic properties of the adsorbed
layer has been extensively studied both numerically [6,12—
15] and analytically [2,16—20].

On the other hand, if there is no preferential attrac-
tion between the monomers and the wall, but the wall
merely represents an impenetrable obstacle, the situation
resembles the aforementioned attractive case for 7 > T,.
In dilute solution, the loss of orientational entropy
makes the monomer and chain concentrations vanish
at the wall. As the bulk density increases, the packing
constraints of all chains gradually compensate the loss
in entropy. At melt-like densities, the monomer profile
develops pronounced oscillations, which are damped out
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after a few interparticle distances and can be interpreted
similarly to those of the pair-distribution function in
bulk fluids. These oscillations are observed in simula-
tions [4,7,10,11,21,22] and can also be rationalized
analytically [23-30].

Whereas these static features of polymer films are
well established, a similar level of understanding for
the dynamic properties has not yet been reached.
However, one would expect the influence of confine-
ment on the polymer structure to carry over to the
dynamic properties of the melt. In fact, computer simu-
lations suggest that the mobility of chains close to a
hard wall increases in parallel, but decreases in perpen-
dicular direction, relative to the isotropic bulk value
[4,7,10,11,31,32]. This anisotropy is usually rationalized
as a consequence of those chain portions which are in
immediate contact with the wall. Their mobility should
be facilitated in parallel direction due to both the
preferentially parallel alignment of the chains and the
smooth walls. In agreement with this interpretation, one
finds that the motion of the polymers approaches the
isotropic bulk behavior on the same length scale as
the chain density profile (on the scale of the bulk radius
of gyration R,) [4,7,10,11,31].

These findings are not limited to polymer films confined
between two solid walls. Recent Monte Carlo simulations
for a coarse-grained lattice model, suitably adapted to effi-
ciently simulate polyethylene [33-35], illustrate the same
dynamic anisotropy between parallel and perpendicular
motions also for free-standing film (two vacuum-polymer
surfaces) [36], nanofibers [37] and supported films (free
surface on one side and solid (partially attractive) substrate
on the other side) [38].

From a theoretical point of view, it would also be inter-
esting to test to what extent widely studied models, such as
the Rouse model [39], can be applied to the polymer
dynamics in confined geometry. In the bulk, this model is
often suggested as a viable approximation to the dynamics
of short chains [39—41] and furthermore underlies the repta-
tion theory for the dynamics of long chains [39]. So, a more
detailed test of its applicability in confined geometry might
be beneficial.

The present paper describes results of such an appli-
cation of the Rouse model to Monte Carlo simulations
of a simple lattice model for a non-entangled polymer
melt which is embedded between two impenetrable
walls. Special attention is paid to the influence of film
thickness on the dynamics (and statics) of the melt. The
thickness D is varied from D = 1.5R, to D = 1.5R,,
thus encompassing the regime of strong to weak spatial
confinement. The paper is organized as follows: Section
2 introduces the model of the simulation; the following
two sections summarize the results. Section 3 discusses
some static properties, whereas Section 4 is devoted to
the dynamics of the films. Section 5 contains our
conclusions.

2. Simulation model

The model of the simulation has been described in detail
in Refs. [22,42]. Here, we only give a brief outline of its
properties. The present approach uses a lattice model: the
bond-fluctuation model [43—46]. A monomer of this model
does not correspond to a single lattice site, but to a whole
unit cell of a simple cubic lattice. This enlarged size of a
monomer allows the bond vectors to fluctuate both in length
and direction. The fluctuation of the bond length b is
limited to the interval 2 =<5 = 10"* to automatically
guarantee local self-avoidance of the monomers and
uncrossability of the bond vectors during the simulation.
Since only excluded volume interactions are taken into
account, the simulated situation corresponds to the high
temperature, fluid regime of the polymer films (formally
T = ).

A chain of the model consists of N = 10 monomers. This
chain length is shorter than the entanglement degree of
polymerization (N, = 37 [47,48]). Therefore, the Rouse
model should provide a reasonable description of the poly-
mer dynamics in the melt [39]. To set up a melt K chains are
placed in a rectangular simulation box of size L X L X D.
The number of chains is adjusted so that the volume fraction
of occupied lattice sites is ¢ = 8NK/DL? = 0.53. At
volume fractions ¢ = 0.5, the bond-fluctuation model exhi-
bits typical features of dense melts [49,50]. The dimension
of the simulation box parallel to the walls is chosen to be
L = 60 (in units of the lattice constant). The choice guaran-
tees that half of the box length is larger than the maximum
end-to-end distance of a chain. This prevents finite-size
effects [22]. In the parallel directions, periodic boundary
conditions are applied, whereas the simulation box is
confined by two completely smooth, hard walls, situated
at z=1 and z = D, in the perpendicular direction. Effec-
tively, this simulates an infinitely long polymer film
embedded between two equivalent, inert substrates. The
film thicknesses studied extend from D =6 (= 1.5R,)
to D =60 (= 15R,). Depending on the system under
consideration, the total number of simulated monomers
ranges between 43,200 and 86,400 to obtain sufficient
statistics.

The simulation employs two kinds of dynamic algo-
rithms: a local random hopping and the non-local slither-
ing-snake algorithm [51,52]. The slithering-snake algorithm
attempts to attach a new, randomly chosen bond vector to
one end of a chain (also randomly chosen). If the attempt
does not violate the excluded volume condition (no lattice
site may be occupied doubly), it is accepted and the last
bond vector of the opposite chain end is removed. This
algorithm is non-local because the whole chain is shifted
over the distance of one bond during the move. Of course,
such a ‘cut-and-paste’ algorithm does not mimic the real
polymer dynamics. It is an artificial procedure which,
however, allows one to rapidly equilibrate the melt [53].
Therefore, we used this method to generate equilibrated
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start configurations for the local random hopping algo-
rithm.! Contrary to the slithering-snake moves, local
random hopping is physically more realistic. In this scheme,
a monomer and a lattice direction are first chosen at random.
Then, a displacement of the monomer in this direction is
proposed, and it is checked whether the target sites are
empty (excluded volume interaction) and whether the new
bonds belong to the allowed set of bond vectors (main-
tenance of chain connectivity). If these conditions are satis-
fied, the move is accepted. These local moves can be
thought of as resulting from a local random force exerted
on a monomer by its environment. They lead to Rouse-like
dynamics which is typical of short polymers in dense melts
[39—41]. Therefore, we used the local random hopping algo-
rithm to investigate the dynamic properties of our system.

3. Static properties of the polymer films

Theoretical studies [2,5,17,23—-30], computer simulations
[4,6,7,9,21,32,54], and some recent experiments [55] (see
however Ref. [56] for different experimental observations)
suggest that the structure of a melt close to an impenetrable
interface is different from that of the bulk. Since the inter-
face restricts the number of accessible configurations, the
chains prefer to stay away from it. This repulsive force has
to compete with the density of the system: in a dense melt, it
is not possible to deplete the vicinity of the interface without
concentrating the inner portion of the film. This increase in
density yields a force, which tends to push the polymers
towards the interface.

The superposition of both forces leads to the following
situation: there are very few chains whose center of mass is
situated at the interface. Those chains are oriented parallel
to wall and flattened. With increasing distance from the
interface, the parallel alignment gradually randomizes and
the chains adopt their bulk-like (ellipsoidal [57-62]) shape.
This crossover from the wall to the bulk behavior extends
over a zone of size of about 2R, next to the interface. Chains
in this zone contribute to enhanced monomer and end-
monomer densities at the interface, which gives rise to char-
acteristic density oscillations around the bulk density: a high
density at the interface imposes a small density in the adja-
cent layer due to excluded volume interactions, which in
turn allows a higher density in the subsequent layer and so
on until the bulk value is reached. These and other density
profiles probing the length scale of a monomer and of a
chain have been studied in detail for the present model
[42,63] and the results were reviewed in Ref. [54] and

! Our criterion to establish whether a configuration is equilibrated was the
following: the mean-square displacements of inner monomers and the
chain’s center of mass were monitored parallel to the wall (Eq. (3)) until
the free diffusive regime was reached. Then, we took the resulting end
configuration and repeated the run. If the newly calculated mean-square
displacements coincided with the initial ones for all times, the system was
considered to be equilibrated.

more recently in Refs. [21,22]. Therefore, we just want to
discuss one example in the following and then pass on to
static correlations of the Rouse modes, which represent an
important input for the subsequent analysis of the dynamic
properties of the films.

3.1. Profile of the end-to-end distance

Fig. 1 shows the profile of the end-to-end distance
Rge(zcm), measured parallel and perpendicular to the walls.
Here, ‘parallel’ means an average of the x- and y-compo-
nents of Rge(zcm), over all chains whose center of mass is
situated at a distance z., from the (left) wall. ‘Perpendicu-
lar’ refers to an analogous average of the z-component of
R2(Zem)-

In order to interpret Fig. 1, one has to take account of the
fact that the instantaneous structure of a polymer resembles
a ‘soap-shaped’ ellipsoid [57—-62]. Far away from the wall,
the film behaves as the unconstrained bulk. The ellipsoid
can orient freely and the polymer appears spherical on aver-
age. The bulk-like inner part extends from the middle of film
to about z., = 2R, = 7.36, where the interfacial region
starts. Since the melt is confined between two walls, such
an inner part can only be observed if D = 18 (=5R,). For
smaller thicknesses, (D < 12 = 3R,) the film just consists
of interfacial region because the perturbations of the struc-
ture, which propagate from both walls, interfere.

Whereas the chain can orient freely inside a thick film,
parallelly aligned and flattened configurations are present at
the wall for all film thicknesses. Therefore, the long axes of
the ellipsoid gradually turn parallel to the wall and the chain
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Fig. 1. Profile of the end-to-end distance, RZ(z.,), measured parallel and
perpendicular to the wall. z.,, denotes the distance of the chain’s center of
mass from the left wall. Since the profiles are symmetric around the middle
of the film, only the left half is shown. Three different thicknesses are
presented: D = 6 (=1.5R,), D = 12, and D = 30 (=7.5R,). The bulk values
of the end-to-end distance parallel to the wall, 2R§e/3 (=50.82), and of the
radius of gyration, R, (=3.68), are indicated by horizontal black dots and by
a vertical dashed line, respectively. All lengths are measured in units of the
lattice constant.
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is distorted when z., approaches the wall. The extent of
these structural changes depends on film thickness. Gener-
ally, this leads to an increase in the parallel component and
to a decrease in the perpendicular component of Reze(zcm),
which is, sometimes, preceded by a slight maximum. We
find such a maximum at z.,, = 6 for D = 12. It corresponds
to chains which are on average preferentially oriented
perpendicular to the wall. Such chains can (presumably)
already touch the wall with some of their monomers and
thus contribute to the large monomer density there. This
interpretation is corroborated by simulations of liquid n-
tridecane, in which the variation of the monomer distribu-
tion around the center of mass shows exactly this behavior
as z.n approaches the wall [64]. In our study, for D = 12, the
chains at z.,, = 6 can reach both walls, which enhances the
perpendicular component Rge, 1 (zem = 6) relative to other
film thicknesses.

For the smallest thickness, D = 6, the film is so thin that
the interference of both walls leads to a very high concen-
tration of chains in the center at z., = 3, whereas their
concentration is comparable to that obtained for larger D
if zem = 1 or z., = 2 [22,65]. Since the layer at z.,, = 3
accomodates many chains, the ellipsoids are less prolate
and their parallel orientation is more pronounced than at
larger film thicknesses. This is reflected by the small
value of RZ, | (zem = 3) in Fig. 1.

3.2. Example for properties averaged over the whole film:
Rouse modes

In a dense melt, long range excluded volume and hydro-
dynamic forces are screened. Therefore, the Rouse model
should provide a reliable approximation to polymer
dynamics if entanglements are unimportant [39—41]. This
is the case in the present simulation (remember N = 10 <
N, = 37 [47,48]). The basic variables of the (discrete)
Rouse model, the Rouse modes, are given by [66]

Z R, (1)co

— 12
)’”T (p=0,1,..,N—1),

ey

where R, (7) is the position of the nth monomer at time ¢. The
model suggests that different modes are orthogonal at all
times, i.e. (X, (1)-X,(0)) o §,,. Att = 0, the (static) correla-
tion of the modes reflects structural properties of the poly-
mers. For the bond-fluctuation model in the bulk, it turned
out that the orthogonality of the modes is well satisfied if
N < N, and that a very good approximation to the simula-
tion data is obtained if local stiffness effects are taken into
account via the average cosine of the bond angle 0

SN(N — 1)
RZ

X,(1) =

(X2(0))

4(~a)
1 — 2(—a)cos(pm/N) + (—a)?’

1 2
- [ sin(pT/2N) ] Bl 2
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where a = {cos 6) and Rze is the mean-square end-to-end
distance. The first term on the right-hand side represents the
(exact) result for completely flexible, random walk chains
[66] and the second is an approximate correction to it due to
local stiffness [48].

Motivated by these bulk results, we determined the static
Rouse mode correlation functions parallel, (X” (0)- X 7(0)),
and perpendicular, <le (0)~Xj (0)), to the wall for
— 1). Representative results are shown
in Figs. 2 and 3. Fig. 2 tests the orthogonality of the first
Rouse mode for the smallest and largest film thicknesses
studied, i.e. for D =6 (=~ L.5R,) and D = 60 (= 15R,).
Two observations can be made: first, the self-correlation
of the first mode is 1-2 orders of magnitude larger than
cross-correlations with ¢ > 1. Nonetheless, the cross-corre-
lations exhibit a systematic trend. They are larger for g =
3,5, 7 than for even modes and particularly pronounced for
these g-values in the thinnest ﬁlm Second, the auto-correla-
tions of <[X|1 0 and 2([X{ (0)]1?) almost coincide for D =
60, whereas <[XH (0)1?) is about a factor of 7 larger than
2([X{ (0)?) for D = 6. The factor 2 for the perpendicular
component takes into account that ([X )] ) is an average
over two directions (x and y), whereas <[X (0)]) is the
correlation along one direction only.

This difference is 1llustrated agam in Fig. 3 which shows
the p-dependence of ([ (0) 1) and 2<[XL(0)]2) for both
film thicknesses. Whereas the parallel and perpendicular
components almost coincide for D = 60, indicating that
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Fig. 2. Test of the orthogonahty of the Rouse modes at = 0. The main
figure shows the parallel, (X (0)- X! 2(0)), and perpendicular components,
(Xf(O)-Xj(O)) g=1,.,N—-1= 9) of the Rouse mode correlation func-
tion for D =6 (=~ 1.5R,) and D = 60 (= 15Ry; R, (= 3.68) is the bulk
radius of gyration). Note that the perpendicular component must be multi-
plied by 2 to put it on the same scale as the parallel component because
(X‘ 0)- X! (0)) is the sum of the (x,y)-directions of the correlation function.
The inset magnifies the results for g = 2,...,9. Although cross-correlations
are about 1-2 orders of magnitude smaller than <X‘l + (0)- Xll + (0)), the corre-
lation between the first mode and ¢ = 3,5, 7 is much more pronounced for
the perpendicular component of the thinnest film than for larger film
thicknesses.
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Fig. 3. Static auto-correlation of the Rouse modes parallel, ([XH (O)] ), and
perpendicular, 2([X 0)] ) to the wall versus mode index p. The factor 2’
for the perpendicular component takes into account that ([XH (0)] ) is an
average over the (x,y)-directions parallel to the wall, whereas <[X1> 0)] ) is
calculated along the z-direction only. Two different film thicknesses are
compared: D = 6 (= 1.5R,) and D = 60 (= 15Ry; R, ( ~3. 68) is the bulk
radius of gyration). The dashed and solid lines show ([ (0)] ) predicted by
the Rouse model for fully flexible chains (first term on the right-hand side of
Eq. (2)) and for freely rotating chains (both terms on the right-hand side of
Eq. (2)), respectively. In Eq. (2), the following averages over the whole film
were used for the parallel end-to-end distance, RZ, 1D R, JD=6)=
59.31, Ree H(D 60) = 51.73 (bulk value: 2Ree/3 = 50.82). For the cosine
of the bond angle, a = (cos 6), the bulk value was inserted, i.e. a =
—0.1055.

the confinement is only a weak constraint for the average
properties of the film, they deviate for small p, but converge
towards one another with increasing p if D = 6. Qualita-
tively, this behavior of the thinnest film is plausible. The
strong confinement makes the chains orient parallel to the
wall and expand in this direction. It particularly affects the
global extension of the chain, but not so much the local
scales: for D = 6, the ratio of the end-to- end distance paral-
lel and perpendlcular to the wall is Ree H/Ree 1 =10.8
(R o = 5931, Reel = 5.49), whereas it is only b| /bl =
29 (b2 4.99, b3 = 1.75) for the bond length. Since the
first Rouse mode measures the overall extension of
the chain, while the higher modes probe more and more
the local scales along the backbone of the chain, the influ-
ence of confinement is expected to be most pronounced for
([X{-(0)]?) in the thinnest film and to decrease with increas-
ing mode index. This behavior is observed in Fig. 3.
Furthermore, the figure shows that Eq. (2) also pr0v1des a
good approximation to the simulation data of ([XH 0] ) in
confined geometry if Ree | is inserted for the respective film
thickness.

4. Dynamic properties of the polymer films

This section deals with the dynamic properties of the
simulated polymer films. For the analysis, we consider

two kinds of quantities: Translational motion is studied by
various mean-square displacements, whereas reorienta-
tional relaxation is probed on the length scale of both the
bond and the chain by time-displaced correlation functions.
Both quantities are analyzed parallel and perpendicular to
the wall and compared to predictions of the Rouse model.

4.1. A mean-square displacements

For a polymer chain in a film geometry, different mean-
square displacements can be defined. Common choices are

”%n———}jqw“u> RO,
n=iM
W%r-—z<m“m Rz () — RE(0) + REr 1),
n=iM
3)
g (0 = (R0 - REEOP),

where ‘iM’ denotes the two inner monomers of a chain (i.e.
5 and 6), and R! n(t) = (Rxn(t)Ryn(t)) R (1) = R, ,(t) and
RL (1) = (Ryem(®). Ry (1), R (1) = R_ (1) are the paral-
lel and perpendicular components of the position vectors to
the nth monomer and to the chain’s center of mass at time ¢.
In Eq. (3), gH denotes the mean-square displacement of the
two inner monomers parallel and perpendicular to the wall,
gg’ is the same displacement relative to the motion of the
center of mass of the chain, and, finally, g; It represents the
mean-square displacement of the chain’ s center of mass
parallel and perpendicular to the wall.

In the bulk, one would expect the following behavior: at
early times, the center of mass hardly moves with respect to
the monomers. Therefore, g,(¢) and g,(¢) virtually start at the
same value which is larger than that of g;(¢) by about a factor
of 1/N. On the other hand, if the center of mass has displaced
over the size of the chain, i.e. g3(r) = R, it diffuses freely.
Chain connectivity then requires that the monomers follow
the motion of the center of mass. At these late times, one
thus expects that g;(¢) oc g3(¢#) = 6Dt (D, = diffusion
coefficient of the chain), and that g,(¢) takes a constant
value (i.e. the monomers do not move in the center-of-
mass system). Due to the definition of g,(¢), this constant
should be proportional to Ré.

Fig. 4 shows that these qualitative aspects are borne out
by the simulation data for the parallel displacements and are
almost independent of film thickness (see panel (a)). The
figure compares two extreme situations: the thinnest film
thickness D = 6 (=1.5R,), where the chains are strongly
confined and oriented parallel to the walls, and the uncon-
strained bulk. Only at early times, there is a noticeable
difference, the displacements of the film being larger than
those of the bulk. These early times correpond to very local
motions on the length scales of a lattice constant (=1) and of
a bond. On these local scales, the differences in the local
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Fig. 4. Log—log plot of the time dependence of various mean-square dis-
placements (msds) measured (a) parallel and (b) perpendicular to the wall:
g1 is the msd of the inner monomers of a chain, g, that of the inner mono-
mers relative to the center of mass, and g that of the chain’s center of mass
(Eq. (3)). The figure compares the behavior of the thinnest film (D = 6 =
L.5Ry; R, (=3.68) is the bulk radius of gyration) with that of the bulk. The
bulk displacements were multiplied by 2/3 in panel (a) and by 1/3 in panel
(b) to account for the fact that the msds of the film represent averages over
two directions for the parallel component and over one direction for the
perpendicular one only. In panel (a), horizontal dashed lines indicate 2/3 of
the bulk end-to-end distance and the bulk radius of gyration, i.e. 2R%/3
(=50.82) and 2R§/3 (=9.03). In panel (b), the horizontal dashed lines show
the components of the end-to-end distance and of the radius of gyration
perpendicular to the wall, i.e. Rge,L(D =6) =549, Rél(D =6) = 1.75,
whereas the dotted horizontal line represents 1/3 of the bulk end-to-end
distance R§C/3 (=25.41). Time is measured in Monte Carlo steps and the
msds in units of the lattice constant.

structure between the film and the bulk must influence the
dynamics.

The observed speeding up of the films could have the
following explanations: on the one hand, oriented chains
should have a smaller number of contacts with their neigh-
bors compared to the bulk because they could be less inter-

mingled. This might lead to a faster motion (see Ref. [67]
for a similar argument to interpret experimental results for
freely standing polymer films). On the other hand, the
completely smooth walls of our model are likely to cut off
the liquid structure present in the bulk. So, they remove part
of the obstacles (i.e. other particles) which impede the
displacement of a tagged particle. The smooth walls thus
act like a ‘lubricant’ with respect to the bulk. This could also
enhance the mobility of the nearby monomers in compari-
son to the bulk.

Both effects should be particularly visible for the thinnest
film at early times where the motion of the monomers and
chains probe the local environment around their initial posi-
tions. As time goes on, they displace over larger and larger
distances and should thus average over these different envir-
onments so that their mean-square displacements resemble
more and more that of bulk at the same overall density. In
fact, a high precision estimate of the chain’s diffusion
coefficient for D = 6 is almost identical to (though a bit
larger than) that of the bulk, i.e. D, (D = 6)/D2¥ = 1.07.

Contrary to the parallel motion, there must be a strong
impact of confinement on displacements perpendicular to
the wall. Displacements in this direction are limited by the
film thickness. Thus, they have to crossover to a constant
proportional to D? at late times. At early times, one also
expects the perpendicular motion of a thin film to be slower
than that of the bulk due to the strongly inhomogeneous
monomer and chain distributions throughout the whole
film. These expectations are borne out by the simulation
data (see panel (b) of Fig. 4).

4.1.1. Comparison with the Rouse model

An interesting question is to what extent the Rouse model
can describe the behavior observed for the mean-square
displacements. If one accepts a difference of 1-2 orders
of magnitude between self- and cross-correlations as a
numerical realization of (Xi‘;l(O)-Xl’L(O» ~ 8, the discus-
sion of Section 3 suggests that orthogonality of the Rouse
modes, parallel and perpendicular to the wall, can be
assumed, at least at + = 0. Extending this assumption to
finite ¢, the mean-square displacements g; and g, can be
written as follows:

@Rt (1) = gt (1) + (g n), &)

N-1
(ggouse)l\,l(t) =8 Z (Xﬂ,’i(o)zﬂl
=1

p
- ot wyeos] BT ] )
where
ol = B OXO) ®)
! (X5 (0%

Egs. (4) and (5) show that the displacements g, and g, can
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Fig. 5. Log—log plot of the time dependence of the various mean-square
displacements (msds) measured (a) parallel and (b) perpendicular to the
wall for D = 6 (=1.5R,; R, (=3.68) is the bulk radius of gyration): g is the
msd of the inner monomers of a chain, g, that of the inner monomers
relative to the center of mass, and g; that of the center of mass (Eq. (3)).
The figure compares the simulation data with predictions of a Rouse-like
theory for g; and g, (solid line: Eq. (4); dashed line: Eq. (5)). The dashed
horizontal lines in panels (a) and (b) show 2/3 of the bulk end-to-end
distance (2R§e/3 = 50.82) and the component of the end-to-end distance
perpendicular to the wall Rge’ (D = 6) = 5.49), respectively. Note that g =
1 corresponds to very local displacements of one lattice constant. All
lengths are measured in units of the lattice constant and time in units of
Monte Carlo steps.

be expressed in terms of measurable quantities, i.e. by the
static and time-displaced auto-correlation functions of the
Rouse modes and by the mean-square displacement of
the center of mass. Their derivation is only based on the
orthogonality of the Rouse modes. Thus, even if
g!’l(t), <X|[|;L(0)2) and @ﬂ’l(t) do not satisfy the predictions
of the Rouse model (which is the case, even in the bulk [48],
for the present model; see Section 3 and Ref. [22]), one can
determine the input quantities of the right-hand side of
Egs. (4) and (5) separately in the simulation and compare
the result to the simulated results for the respective dis-

placements. Such a comparison should reveal to what extent
orthogonality is preserved when correlating Rouse modes at
t = 0 with those at t > 0.

Fig. 5 shows a test of this idea for both parallel (panel (a))
and perpendicular displacements (panel (b)) of the thinnest
film, for which static cross-correlations between the Rouse
modes were most pronounced (Fig. 2). Although the coin-
cidence of g‘l () and (g%°"%)l(¢) at late times is imposed by
construction — note that g‘l‘ () ~ g!(t) as well as
(&% N(r) ~ gl(1) if t — oo, since D)t — 00) = 0 — the
assumption of orthogonality represents a good approxima-
tion, also for the perpendicular displacements, at all times.
The violation of orthogonality is more noticeable for the
perpendicular component than for the parallel one. This
could have been anticipated from the behavior of the static
correlations (Fig. 2).

4.2. Orientational correlation functions

The relaxation of orientational correlations on different
length scales along the backbone of the chain can be moni-
tored by

(A(N-A(0)) — <A(t)>-<A(0)>_

D,(t) =
A (A02) — (A(0))?

(N

For the present analysis, we chose the bond and the end-
to-end vectors, ie. A()=b,, and A@) =R )
(b, = bond vector from monomer n to monomer n + 1).
The corresponding correlation functions are shown in
Fig. 6 for D = 6 where they are compared with bulk and
predictions of the Rouse model, i.e.

S (&b o-XE 0o’ [pm2N]
p odd

> (X} ()] )cos’[pm/2N] )

p odd

b Rouse ( l) —

ee,l; L

p=1,.,N—1),
<p§ﬁ§‘f8(z)

N—1N-1
>3 X)X 0)sin? [npm/Nsin [pm/2N]
n=1 =1

N —pl N—-1

> > ([Xb+(0)1?)sin?[npm/N]sin® [pm/2N]

n=1 p=1

9)

In analogy to the discussion of the mean-square displace-
ments, Egs. (8) and (9) only use the assumption that the
Rouse modes are orthogonal at all times. Fig. 6 allows
several conclusions: the relaxation parallel to wall is much
slower than the perpendicular one for both correlation func-
tions. This difference is particularly pronounced for D = 6
and gradually vanishes with increasing film thicknesses (not
shown here). If D = 30 (=7.5R,), parallel and perpendi-
cular correlation functions (almost) coincide with one
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Fig. 6. Correlation functions of the end-to-end distance, P (#) and
D, (t), and of the bond vector, Py () and P, (¢), calculated parallel
() and perpendicular ( L ) to the wall (Eq. (7)), versus time for the thinnest
film thickness D = 6 ( =~ 1.5Ry; R, ( =~ 3.68) is the bulk radius of gyration).
The simulation data are represented by symbols. The solid and dashed lines
show the predictions of the Rouse-like theory, Eqs. (8) and (9), for end-to-
end distance and the bond vector, respectively. Note that these predictions
are obtained by only assuming that the Rouse modes are orthogonal. The
required input, i.e. the static and time-displaced correlation functions of the
Rouse modes, are calculated independently in the simulation. Furthermore,
the filled points show the correlation functions of the bulk for comparison.
Time is measured in Monte Carlo steps.

another and with the bulk relaxation which is ‘sandwiched’
between both the components for all film thicknesses (see
also Ref. [65] for a discussion of various intermediate scat-
tering functions).

A possible explanation for the fast relaxation of @, (¢)
and P.. (7) could be as follows: imagine a polymer film
with a thickness of one monomer. In this two-dimensional
geometry, no relaxation perpendicular to the walls can
occur. The perpendicular component of vectors, such as
the bond vector or the end-to-end distance, is zero. If the
film increases, the perpendicular component gradually takes
a finite value, which can, however, be fairly small due to the
pronounced parallel orientation of the chains (Fig. 1). Only
those vectors A with finite perpendicular component contri-
bute appreciably to the initial value of the correlation
(Ai(O)). If A | (0) relaxes back to a more parallel orientation
when time increases, the contribution A, (¢)-A (0) to the
correlation function becomes very small and the value of
(A | (1)-A | (0)) should reduce considerably. Presumably, the
‘fast’ relaxation of the perpendicular correlation functions is
thus rather a consequence of the smallness of the perpendi-
cular component than of a rapid reorientation in this direc-
tion, since one would expect such reorientations to be
suppressed by the parallel alignment of the chains for
small film thicknesses.

Furthermore, Fig. 6 shows that the orthogonality of the
Rouse modes is also a good assumption to model the decay
of @,(®), Py (1) and of D (1), P (f). For the bond

vector, Eq. (9) provides a perfect description, whereas Eq.
(8) slightly deviates from the simulation data of the end-to-
end vector relaxation. This difference between theory and
simulation is presumably not a result of the strong confine-
ment because similar deviations as observed here for the
parallel component, are also present in the bulk. Therefore,
they should rather be attributed to a violation of the perfect
orthogonality of the Rouse modes, as it was pointed out in
the discussion of Figs. 2 and 5. The difference of the accu-
racy to which the orthogonality assumption is valid for the
bond vector and end-to-end vector decorrelations might be
rationalized by the following argument: the non-orthogonal
corrections of the bond and end-to-end vector correlations
(i.e. nominator of Egs. (8) and (9)) take the following form:

| Nol N-d
=5 > Y X oXE o)
n=1 p#q=1 (10)
sin(%)sin(%)sin(%)sin(% ),
cliw =4 Nf (XH’L(I)-X”’l(O))COS< r )cos( ﬂ)
“ p#q=1 (odd) 4 ! 2N 2N '

1)

Fig. 2 suggests that the amplitude of the cross-correla-
tions (X,,(1)-X,,(0)) is large if both p and ¢ are small, and that
the biggest contribution should result from the modes p = 1
and g = 3. With this choice for p and g Eq. (11) shows that
sin(pm/2N)sin(gm/2N) = 0.07 for N = 10. Thus, the
correction for bond vector is much smaller than the
corresponding one for the end-to-end distance since
cos(pm/2N)cos(gm/2N) = 0.88 in this case. This might be
the reason for the better coincidence of the simulation data
with the Rouse model for the bond vector correlation
function.

5. Summary

The purpose of this paper was to study the influence of
spatial confinement on the properties of a polymer melt in
an idealized situation. The simulation model consists of
short (non-entangled) monodisperse chains, which are
embedded between two completely smooth and impene-
trable walls. Only excluded volume interactions are taken
into account between the monomers and between the mono-
mers and the walls. With this model, we investigated both
static and dynamic features of polymer films of various
thicknesses ranging from D =~ 1.5R, to D =~ 15R,.

To interpret the static results, one has to take into account
the fact that the instantaneous shape of a polymer resembles
a flattened ellipsoid. Close to an impenetrable wall, the two
largest principal axes of the ellipsoid align parallel to it,
whereas the smallest axis orients perpendicularly [21,22].
This wall induced orientation of the chains extends over a



C. Mischler et al. / Polymer 43 (2002) 467-476 475

distance of about 2R, from the wall (Fig. 1). In addition to
this interfacial region, there is a bulk-like inner region with
free orientation of the chains for sufficiently large film thick-
nesses (D = 5R,). On the other hand, as the film thickness
decreases, the orientational freedom becomes more and
more limited due to the interference of both walls. There-
fore, the chains tend to align parallel to the walls in the inner
portion of the film if D < 4R,.

The spatially anisotropic geometry of the film also influ-
ences the dynamic properties of the polymer melt. Displace-
ments perpendicular to walls are limited by the film
thickness (Fig. 4) and relaxations of vectors perpendicular
to the wall decay more quickly than their parallel counter-
parts (Fig. 6), presumably due to parallel orientation of the
chains and the resulting small values for the perpendicular
components of the vectors. On the other hand, the displace-
ment parallel to the wall remains almost bulk-like and thus
essentially unaffected by the confinement, even if the film
thickness is of order R,.

In the bulk, the polymer dynamics of short chains can be
reasonably approximated by the Rouse theory [48]. A simi-
lar observation is made here for confined polymer melts if
one uses a theory which only assumes the orthogonality of
the Rouse modes, but determines their static and time-
displaced correlations from the simulation (Figs. 5 and 6).
These correlations deviate from the Rouse predictions
(illustrated by Figs. 2 and 3, for the static correlations; see
Refs. [22,48] for corresponding dynamic correlations in the
film and the bulk, respectively). Chain stiffness and confine-
ment effects have to be taken into account. Therefore, the
challenge remains in understanding how these effects deter-
mine the dependence of these correlations on chain length,
mode index, etc.
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